基于用户影响力感知的在线学习资源推荐方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

湖南省自然科学基金项目(2022JJ60024)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对在线学习中推荐数据稀疏性和资源多样化需求等问题,构建了一套在线学习混合推荐策略。该研究提出了一种基于用户相似性、知识可信度和用户影响力评估的在线学习用户模型LIAM,以提高推荐效果。同时,采用动态直觉模糊DIF策略对LIAM模型进行优化,以提高模型的推荐准确性和可解释性。最后,该研究提出了一种基于自组织的推荐方法SOR,用于解决推荐结果的多样性和覆盖性问题,从而形成了一套完整的在线学习混合推荐策略。同时,采用Coursera数据集对推荐方法SOR进行性能验证,实验结果表明,该方法优于其他两种代表性推荐方法。推荐方法SOR有望为在线学习推荐系统提供更加准确和个性化的推荐服务,提升学习效果和用户体验。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

郭飞雁,贺晶晶.基于用户影响力感知的在线学习资源推荐方法[J].当代教育理论与实践,2024,(4):48-54

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-09-03